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By making use of the potential distribution in the electric double layers of two identical spherical
colloidal particles, obtained numerically in the preceding paper (Hoskin 1955), the free energy of
interaction of the two particles is calculated on the Manchester University Electronic Computer.
Various equivalent formulae for both the interaction energy and the repulsive force are applied and
compared. Itis demonstrated that for the mesh used here, which is based on dipolar co-ordinates,
the most accurate method is that which expresses the force in terms of the potential distribution on
the median plane. The method of Derjaguin (1934, 1939) for determining the free energy, which
treats two spherical particles as consisting of sections of two infinite parallel plates, is shown to yield
a good approximation over a wide range of the relevant parameters. Three convenient methods of
evaluating the free energy, which are based on the Derjaguin formula, are developed. These are
suitable at (i) large particle separations, (i) small surface potentials and (iii) large surface potentials.

1. INTRODUCTION

Two approximate methods of determining the free energy of interaction of the double
layers of two spherical colloidal particles have been developed. The first is based on a series
solution of the linear Debye-Hiickel equation, which was obtained by Levine (1939) and
applied by Derjaguin (1940) and Verwey & Overbeek (1948). This approach is applicable
when the potential at the surface of the particles is of the order of 50mV or less and the
thickness of the double layers, 1/k, is not less than about one-fifth of the particle radius a.
The second method was originally proposed by Derjaguin (1934, 1939), who first applied
it to small surface potentials. Later it was extended independently by Derjaguin & Landau
(1941) and Verwey & Overbeek (1948) to larger potentials. Derjaguin replaced the two
spheres by a set of parallel rings, each pair of rings being treated as sections of infinite
parallel plates. This method can be used if the thickness of the double layer is small compared
with the particle radius (a>5/k, say) and the particles are not too far apart, i.e. the diffuse
1 Present address: Atomic Weapons Research Establishment, Berkshire.
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450 N. E. HOSKIN AND S. LEVINE ON THE

layers do overlap to a slight degree. Fortunately, at such large separations the interaction
energy is also very small, and so the latter limitation is generally of little importance for
stability properties. In this paper we shall obtain numerically the free energy of interaction
by making use of the potential distributions in the interpenetrating double layers of the
two spherical particles for the sixty different cases computed in the preceding part I (Hoskin
1955). These numerical calculations will be used to investigate the accuracy and range of
validity of the two approximate theoretical methods described above.

Theoretically, the free energy may be obtained by two separate, though fundamentally
equivalent, procedures: (i) directly from the potential distribution by the appropriate
integration either over the volume external to the two spheres or over the surface of the
particles; (ii) indirectly by first obtaining the force of repulsion from the potential distribu-
tion and then integrating the force with respect to the distance between the particles.
The relation connecting the free energy and potential distribution may be expressed in
various forms, and the equivalence of these has been proved by Casimir (1948) and later by
Levine (1950, 1951) and Ikeda (1953). However, all the expressions involve numerical
differentiation at the particle surface which may give rise to large errors for large values of
the surface potential, since gradients of the potential function then vary rapidly and become
large in the immediate neighbourhood of the particle. Also, the mesh size and hence the
errors increase with the particle radius or the separation. Furthermore, we need to subtract
the energy at infinite separation of the particles, and this usually means forming the differ-
ence between two large quantities, already subject to some error, to obtain a much smaller
one. Nevertheless, in order to assess the usefulness of the various relations, it was felt worth
while to evaluate the free energy for the lowest parameter values by all the methods avail-
able. It should be emphasized that some of the disadvantages quoted in this paper are
mainly due to the manner in which the potential distribution has been found and do not
preclude the use of the various equivalent formulae with different distributions of mesh
points.

The force of repulsion between the particles can be obtained either by generalizing the
considerations of Frumkin & Gorodetzkaya (1938), Langmuir (1938) and Derjaguin &
Landau (1941) for two parallel plates or by differentiating directly the formula for the free
energy with respect to the particle separation. One form for the force can be expressed in
terms of the potential distribution on the median plane, and one of the main conclusions in the
present paper is that this yields the most accurate value for the free energy of interaction. (This is
designated in the text as method III.) Indeed, among the various numerical methods
investigated, this is the only reliable one for a considerable range of the relevant parameters,
with the particular mesh used in part I. It seems likely that this formula for the force across
the median plane will lend itself most readily to numerical methods in general. Two reasons
for the superiority over the expressions for the free energy referred to above may be cited.
First, the error in the potential is smallest in the region of the median plane, and secondly,
no subtractions are necessary. Indeed, the effect of errors is decreased rather than increased
when integration with respect to the separation is carried out to obtain the free energy.
A second form for the force is described in terms of the potential gradient at the particle
surface, but this suffers from the same defects as the corresponding expression for the free

energy.
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A second striking result is the verification of the accuracy of the Derjaguin method over a large
range of the parameters on which the free energy depends, the error being of the order of
10 9%, or less if ka > 5. An analysis of the nature of the approximations in this method suggests
that its success is partly due to the fortunate cancellation of errors. It would probably be
very much worth while, although by no means an easy task, to extend the investigations
further, with a view to finding an analytical expression for the correction to the approximate
formula for the free energy, which is based on the Derjaguin theory. In order to test the
accuracy of this theory, we endeavoured to utilize the calculations of Verwey & Overbeek
given in their table XVTI (1948, p. 141), but found that interpolation of their figures was
unreliable. To construct their table, these authors extended the original Derjaguin formula
to larger potentials and then carried out a tedious graphical integration. In view of the
validity of the Derjaguin approach for ka>5, we considered that it was very desirable to
devise more convenient methods of computing the Derjaguin formula for the free energy.
Three different types of series for the free energy of interaction of two spherical particles,
based on the Derjaguin theory, have been developed. These employ convenient expansions
for the free energy of two plates which have been obtained by Levine & Suddaby (1951 4, 4,
1952). One method is suitable at large separations, the second at small surface potentials
and the third at large surface potentials. Suitable numerical tables of the coefficients in
these expansions are given. The use of these series enables almost the whole range of the
relevant parameters (subject to the condition xa>5, say) to be covered in an adequate
manner except, perhaps, when the separation is small and the surface potential lies between
50 and 100mV.

We may comment as follows on the value of the numerical work carried out on the
electronic computer, the results of which are presented in this paper. At present, the main
purpose of the above calculations would be to develop stability relations of colloidal systems.
Since this could form the subject-matter of several papers we shall only suggest to what
extent such an objective can be attained by applying the results in the present paper. In
most hydrophobic sols, the radius of the particles is usually larger than 10 mg and the
concentration of electrolyte in the region of instability appreciably greater than 15 N if
the (inorganic) coagulating ion is univalent. This means that the region where the system
becomes unstable usually corresponds to ka> 5, and it is in this range that the Derjaguin
theory yields reasonable results. Provided the surface potential is very nearly uniform, the
present calculations should be adequate for most sols when the dispersion medium is a 1-1
electrolyte. In this connexion we should bear in mind that in order to determine the stability
properties, the van der Waals—London attraction must be added to the repulsion between
the double layers, and the error in the theoretical value of the constant in this attraction is
considerably greater than 10 9,. The obvious gap in the theoretical knowledge about the
electrical interaction energy is at small values of k& (<5) and surface potentials greater
than (50/z) mV where z is the valency of the coagulating ion. This is particularly pertinent
if the valency of the coagulating ion is greater than one and the particle radius is not large.
By judicious interpolation, it should be possible to obtain considerable information con-
cerning stability conditions for small k. However, since further computations are desirable
at small values of ka, such a program of work has been undertaken with a view to applying
the results to stability conditions.

56-2
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All undefined symbols will have the same meaning as in part I, and again a dash will be
used whenever distances are measured in units of 1/«, the characteristic thickness of the
double layer.

2. EXPRESSIONS FOR THE FREE ENERGY

Two equivalent forms for the free energy were used. The first was originally obtained by
Verwey & Overbeek (1948) in the special case of two parallel plates, and its general form
was given by Levine (1951). Let I# be the ordinary electrostatic energy associated with the
double layers and AII the difference between the ‘ideal’ osmotic pressure of the ions at
a point in the diffuse layers and the corresponding pressure at infinity. Then the free energy
of the double layers is

F=—W~—fVAHdv. (21)

In the case of a symmetrical binary electrolyte this may be written as
F“———f jvwzdv—zn/sTf (cosh—-~1) dv (2-2)
=—% » [|V'$|?2+2(coshg—1)]dv". (2-3)

It is convenient to introduce the non-dimensional quantity F* = x3F/nkT and to transform
to dipolar co-ordinates, since the potential distributions are known on a mesh formed by
the two sets of coaxial circles, which are co-ordinate curves in this system. Equation (2-3)
then reads

o ———4ﬂ€3ftodtf [(cosht cosu)2{(ﬁt) (3;15) }+2(cosh¢ ):l( sinudu . (24)

cosh?—cosu)3

The corresponding expression, F§ say, for a single spherical particle has already been
computed numerically by Hoskin (1953). We shall refer to the use of (2-4) as method I.

The second expression for the free energy is the Lippmann equation, introduced by
Derjaguin (1940) and Verwey & Overbeek (1948). Its general equivalence to the form (2-1)
was proven by Levine (1951). It reads

F——2 dsf%a—d;ﬁ—_——i“@f dS’f 9 44, (2:5)
Sp 0 K Sﬁ

where §, is the surface of one of the particles. Transforming to dipolar co-ordinates we may

rewrite (2-5) as .
* m sinudu @ (Q_ﬁé) .
F 8¢ o (cosh¢y,—cosu) fo ot l=tod¢’ (2-6)

the use of which will be designated as method II.

The physical quantity of interest, the free energy of interaction, is the change in the free
energy as the particles are brought from infinite separation to their given configuration.
Thus, we introduce the non-dimensional quantity

AF* — F* %, (2:7)

This function was evaluated, but the results were in general rather unsatisfactory. The main
cause for this failure was that 7* and 2F§ are almost equal, so that AF* is much less than F*.
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For example, for the cases with 7 =1, ® = 2 the largest value of AF* (that for smallest
separation) was roughly 109, of F*, and the corresponding value of AF* for the largest
value of the separation was only about 2 %, of F*. This ratio becomes even smaller as ® is
increased, and it may be seen that any errors occurring in the separate evaluation of F*
and F§ have their effect increased enormously as a result of the subtraction. An additional
objection to method ITis thatitinvolves the surface charge which cannot be determined with
any reliance over the whole of the particle surface (see part I). The disadvantage of dipolar
co-ordinates in calculating the free energy by means of (2-4) or (2-6) is essentially due to
the manner in which the mesh size varies throughout the volume V. In the region between
the two particles the mesh length is smallest, whereas in the regions on the outer sides of
the particles the mesh length is much too large to give any reasonable accuracy.

3. FORCE BETWEEN THE PARTICLES

To determine this force, we may start with the general considerations of Coolidge &
Juda (1946) (compare also Stratton 1941, pp. 97-103). Making use of the Poisson—Boltz-
mann equation, we may write

V.T =/E = f; V2V = 2nzesinh gVy = VII, (3-1)

where T = (¢/87) (2EE — E?I) is the familiar stress tensor in electrostatics, I being the
unit tensor, E = —Vy is the electric field, p is the (volume) charge density, and E is the
magnitude of the vector E. Consider any simply (or multiply) connected volume v in the
double layers bounded by a surface (or surfaces) S. Then we have (Stratton 1941, p. 103)

0 =L (V. T—VII) dv =L|:Z€7;{(E.n) E— }Em)— (I1—II,) n] ds, (3-2)

where n is the unit outward normal vector to the surface S. It is convenient to add on
I1, f ndS$ = 0 to the right-hand member of (3-2).
s

Let us now consider the volume contained by a large hemisphere, with median plane
as base, but excluding the particle, centre O, contained inside. Then we may apply (3-2)
to this volume and § consists of a section of the median plane ,,, the surface of the particle
S, and the hemisphere §,. If we now increase the radius of the hemisphere so that all parts
of its surface move off to infinity, then the integral over S, will tend to zero, since the
potential diminishes exponentially at large distances from 0. On Sy, ¢ and therefore I1
are constant, f S nd$ = 0, and if we assume ¥,>0, E=—FEn. On §,, E.n =0 and n is
parallel to the lfne or centres, 00’ say, of the two particles. Hence (or by axial symmetry)
the vector which is obtained when integrating over the surface $, also points along the line
of centres. We therefore derive that

-me(éEurn—no)ds—_——g%

f Eznds'zi E?cos0dS, (3-3)
Sp 8, Sp )

where we now integrate over the whole median plane in the left-hand member, and if P
is a point on the particle surface, 4 is the angle between OP and 00'.
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454 N. E. HOSKIN AND S. LEVINE ON THE

In the case of two parallel plates (i.e. when the particles become infinitely large), £ = 0
at the median plane, and the left-hand member of (3-3) reduces to the expression obtained
by Frumkin & Gorodetzkaya (1938) and Langmuir (1938) for the force between the plates.
This suggests that we identify (3-3) with the force of repulsion between the two particles.
The left-hand member of (3-3) can be interpreted as the total force acting across the median
plane, consisting of the osmotic pressure and the electrostatic stress. The right-hand member
of (3-3) consists only of the electrostatic stress acting across the particle surface. The
osmotic term vanishes, since the osmotic force at any point on the particle surface is balanced
by that acting at the other end of the diameter. In order to prove that the two equivalent
expressions in (3-3) actually represent the force between the particles, we must obtain
these results by differentiating the expression (21) for F with respect to the separation R.
This is carried out in the appendix where we consider the case of two colloidal particles P
and P’ say, which are of arbitrary shape and have a uniform (positive) surface potential
i, which is independent of mutual separation and orientation.

Making use of the left-hand member of (3-3), the force between two spherical particles
may be written as

dFf zey € ) )
~qp= 2T [ (coshﬁ—l) dS+8—ﬂme; vy |2ds. (3-4)
We introduce a non-dimensional quantity '
k2 dF  dF*

w o A O B
Jr= nkTdR dr’

and transform to dipolar co-ordinates. Equation (3-4) then reads

7((0¢\?  2c%(coshg—1)| .

* —_— I .
— 27rfO {(au) _I"—__—(l.—cosu)? }smudu, (3+5)

noting that ¢ = 0 and d¢/d¢ = 0 at the median plane. The application of (3-5) is referred to
as method III. Alternatively, if we make use of the right-hand member of (3-3) and trans-
form to dipolar co-ordinates, we obtain

« _ [™(cosht, cosu—1) (0_)2 . .
/ —fo (cosh#y—cosu) \dt t%Slnudu’ (3-6)

the application of which will be called method IV.

4. DERJAGUIN’S METHOD

The basic formula in this method can be expressed in the form

® _ mak® [ * * * .
AF T R*AFp(R ) dR*, (4-1)
where AF,(R*) is the free energy of interaction per unit area of two parallel plates at a
separation R—2a and R* = k(R—2a) = 7(s—2). For large R we may apply a convenient
expansion for the free energy of two parallel plates, which has been obtained by Levine
& Suddaby (19514, b). The first three terms in this expansion read

AF,(R¥) — 9‘%’/’(_’“111‘[1_1‘(213*—3“3)+8P2{R*2+R*(43—g)+1—53+452-2ﬂ}+...],

(4-2)
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INTERACTION OF TWO SPHERICAL PARTICLES. II 455
where I' = tanh? (}®) e~®*, § = cosh{®/sinh?2{® and p = §/sinh?}.
Integration of (4-2) yields
AF* = 64nrl'[1 —T'(R* —1+20) + 82{R*2 4 R* (40 — 1) + {5 — 410+ 402 —2u} +...]. (4°3)

Application of this result will be known as method Va.
For small ®(3,<<50mV) we may apply a second series for AF,(R*) which is expressed
in powers of ® and which reads

AF,(R*) = Z5Ta0[1 tanh §R* + 3 {1 —24G(}R*)}0?
oo {1 —1920H(FR* D 1 ...], (4+4)
TABLE 1 :

x —103B(x) 105C(x) x —103B(x) . 105C(x)
0 1042 30-38 11 5-019 23-13
005 1135 29-96 1-2 4157 1916
010 12:09 30-00 13 3.423 15-64
015 12-62 30-72 14 2.805 1265
0-20 1296 31-91 15 2291 10-15
025 1313 3340 1-6 1867 8118
0-30 1313 35-04 17 1.519 6477
0-35 1299 36-67 18 1-235 5164
0-40 1273 3812 1.9 1.004 4118
0-45 1236 39-27 2.0 0-8158 3288
0-50 11-90 40-05 2.1 0-6632 2:630
0-55 11-38 40-38 2.2 05394 2107
060 10-81 40-25 2.3 04388 1-692
0-65 1021 39-67 2.4 0-3572 1-361
070 9-584 38.68 2.5 0-2009 1-007
075 8-959 37-33 2.6 0-2371 0-8771
0-80 8-320 3567 2.7 01033 07169
0-85 7716 33-79 2.8 0-1577 0-5809
0-90 7.122 3175 2.9 0-1287 04713
095 6:552 29-61 3.0 0-1051 0-3828
1.0 6:010 27-43 0 0 0

where G(3R*) and H(§R*) are certain functions which are readily integrated with respect
to R* (Levine & Suddaby 19514, equation (35)). We obtain therefore

AF* = 87®0%7[In (1-+e k") + B(LR*) 2+ C(ER*) D%+ .. ], (4+5)
where B(x) = ¢§[—1+tanh?x —x{2 —tanh x(2+sech?x)}]
and  C(x) = 5gg [£—x +22{2+?sech® x +-x tanh x(3 — 4% tanh? x + 4L tanh* x)
‘ ' —ystanh?x(114 3 tanh2x)}].

Values of B(x) and C(x) are given in table 1. The first term on the right-hand side of (4-5)
was originally obtained by Derjaguin (1940) when he applied the linear Debye-Hiickel
equation to the case of small potentials. We shall refer to the use of (4:5) as method V5.

Finally, we shall develop a third method of evaluating the integral in (4-1), which is
particularly suitable for large surface potentials, provided R* is not too small. Consider two

parallel (infinite) colloidal plates, at potential ¢, and separation 24, and let ¢, = zey, kT,
where ¥, is the potential at the median plane. Itis convenient to introduce the substitution

__1 " sing, _ cosh (36,)
FTCh g T cosh (36 (&0
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which was used by Derjaguin & Landau (1941). Then in the case of a binary, symmetrical
electrolyte, the solution of the Poisson—Boltzmann equation leads to the relation

O = «d = k[K (k) —F(k, ,)], (4:7)
h Flkdy) = [ du (4°8)
T 2P0l =)o Ay (TR
is the elliptic integral of the first kind and K (k) = F(k, im). It is readily verified that
1 1 1
0 = kK(K) — g5 (1+ ) 55 (g + 5+ a) gt (49)

where H = cosh }®. Making use of the expression for the force per unit area between the
two plates, as first given by Frumkin & Gorodetskaya (1938) and Langmuir (1938), the
free energy of interaction per unit area of the plates is

AF (2/<d)—4nka2d(p—1)dR—8nI/:Tf (5- 1)(31—(l?dk (4'10)
I i -3 b ()

(4-11)

where E(k) is the complete elliptic integral of the second kind. The first term in this expan-
sion in powers of 1/H has been obtained by Derjaguin & Landau (1941). A completely
equivalent seriest has been derived by Levine & Suddaby (1952), who chose the modulus
[ = exp (—¢,,) and expanded in powers of exp (—3®) rather than (1/H).

When substituting (4-11) into (4:1) we identify 2kd with R* and so obtain

AF* — 27m/< f AF

= 1677 I:fl(k)+ »Jﬁynt—}—ﬁ)jt...:l, (4-12)
where  fi(k) = 3(1—£2) K2(k) — 2{E(k) — k} K (k) + f ; LKe(B) d,
fo(k) = 108[20+k3{16(2 k2) E(K) — (17— 942) (1-k2)1<(k)—36k}]

1517 (1—42
and A0 = o[t - B8 ar g K0t

8 3 2
+spugs (81 44— 48k4)E(k)—F~E§:|.

Values of kK (k), f,(k), fo(k) and f;(k) for various £ are given in table 2. The integral in the
formula for f;(k) is evaluated numerically. The use of (4-12) is designated as method Ve.
When we do not distinguish between the three methods described above for evaluating
(4-1) we shall refer to method V.

t This alternative series should read (in the present notation)

AF,(2xd) = 4”"T|:1%(2+1—-) K(l) +4-E(l) — 4+12(1121)4 ety LU A0 oy ]
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INTERACTION OF TWO SPHERICAL PARTICLES. 11 457
TABLE 2

k kK(k) Ji(k) J2(k) J3(k)
0 0 o] le'e) ')
0-05 0-07859 5:162 1612 3-285 x 105
0-10 0:1575 3:600 184-7 9571
0-15 0-2370 2743 49-79 1172
0-20 0-3174 2-171 18-95 257-9
0-25 0-3991 1-755 8:675 78-01
0-30 0-4824 1-435 4-442 28:76
0-35 0-5679 1-182 2-447 12-11
0-40 0:6560 0-9753 1-415 5-600
0-45 0-7474 0-8046 0-8447 2-766
0-50 0-8429 0-6616 0-5141 1-432
0-55 0-9434 0-5406 0-3156 0-7640
0-60 1-050 0-4375 0-1934 0-4146
0-65 1-166 0:3492 0-1171 0-2256
0-70 1-292 0-2734 0-06915 0-1213
075 1-433 0-2082 0-03911 0-06314
0-80 1-596 0-1521 0-02061 0-03091
0-85 1-793 0-1040 0-029629 0-:01353
0-90 2-052 0-06294 0-023578 0-024742
0-95 2-461 0-02836 0-037505 0-039439
1 o'} 0 0 0

5. RESULTS AND DISCUSSION

Table 3 gives the force of repulsion by method III, which yields the most accurate results,
for the sixty potential distributions available (see part I). The corresponding values for
the force, as determined by method V, dre shown for comparison. It should be observed
that according to method V, the ratio /*/7 depends on @ and R* but is independent of 7;
this is an approximation. The agreement between methods III and V is surprisingly good
over a wide range of ®, 7 and R*, although the error in method V clearly increases with
decrease in 7 and increases to a less degree when ®@ or R* become large.

TABLE 3. FORCE OF REPULSION BETWEEN TWO SPHERICAL PARTICLES
Evaluation by methods III and V of the quantity f*/277®2 for various 7, ® and R*¥ = R—27.

R* 0-50 1-00 1-50 200 300
.
k I
1 2 0-8551 0-5004 0-2765 0-1486 0-0453
4 0-8049 0-4144 0-2214 0-1208 0-0368
6 0-6694 0-3090 0-1616 0-0883 0-0275
8 0-5070 0-2209 0-1147 0-0630 0-0200
5 2 07802 0-5025 0-3173 0-1941 0-0708
4 0-7404 0-3977 0-2337 0-1390 0-0508
6 0-6098 0-2825 0-1583 0-0931 0-0343
8 0-4568 0-1995 0-1080 0-0633 0-0235
15 2 07528 0-4943 0-3211 0-2057 0-0775
4 07211 0-3941 0-2321 0-1418 0-0535
6 0-5939 0-2794 0:1557 0-0933 0-0353
8 0-4444 0-1939 0-1055 0-0628 0-0239
\Y

7 large 2 0-760 0-497 0-319 0-203 0-0794
4 0-71 0-38, 0-226 0-137 0-0522
6 0-577 0-268 0-147 0-0863 0-0323
8 0-422 0-179 0-0952 0-0553 0-0205

57 Vor. 248. A.
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When integrating the expression for the force with respect to the separation R in method
IIT an unknown additive constant was brought in, since the smallest value of the force was
determined at a finite value of R. To overcome this difficulty we proceeded in the following
way in the case of small 7. When R is sufficiently large the potential will be so small at any
point in the median plane that the approximate linear Debye-Hiickel equation may replace
the Poisson—Boltzmann equation. Provided 7is not too large (less than 10, say) we may then
assume linear superposition of the potentials due to the separate particles and so write the
potential distribution on the median plane as

6= g[S+ (5)

n Ty

where g(7,®) is some function of 7 and ® and r; and r; (r;=r;) are the distances (in units
of 1/k) of any point of the median plane from centres O and O’ respectively. We may
write (3-4) as

/%= 1174 +2(coshg—1)] ds
Sm .

9 2
~ f [| V6 |2+¢2] dS’ = 2n f [(dﬁ) +¢2] g (52)
Sm o L\dp
Noting that (5-1) becomes
§ = o exp [— {2+ (1R, (53
Vi (GR')? .
where R’ = s7 is the separation, (4-2) is readily integrated and yields
" ) e ¥ 1

J* = 8ng¥(7,0) R (1 +§R7> . (5-4)
Integration of (5-4) yields AF* = 8ng?(1,®) e ®|R'. (5-5)

The function g(7,®) is then computed by substituting the numerical value of the force for
the given @ and 7 at the largest value of R'. This method is applicable at 7 = 1 and 7 = 5,
but not at 7 = 15, since the higher terms in the expansion for ® of which (5-1) is the first
term become important (cf. Verwey & Overbeek (1948)). For small @ the results of Levine
(1939) indicate that g(7,®) = ®re” very nearly and then (5-5) reduces to the expression
derived by Verwey & Overbeek (1948, p. 149) for large R’ and small @. At large 7, when
(5-1) is no longer applicable, use is made of one of the three series expansions developed in
the preceding section of the Derjaguin formula (4-1) (method V).

In table 4, the free energy is computed by method III for the sixty cases referred to above.
The free energy at the largest separation is determined from (5:5) for7 =1 and 5 and by
method V (i.e. from one of (4-3), (4-5) and (4-12)) at 7 = 15. Now according to the latter
method, the ratio AF*/r depends on ® and R* but is otherwise independent of 7; in par-
ticular, it should take the same value at 7 = 5 and 15 for given ® and R*. But we see that the
values given by (5:5) and method V for AF*/r at R* = 3 and 7 = 5 differ slightly. This
indicates that at 7 = 5 the additive constant, which is required when integrating the force
expression, may be somewhat in error in the last figure in table 4. This uncertainty could
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be removed by extending the computations to larger values of the separation. In table 4
the results obtained by method III are also compared with the following:

(1) The series of Verwey & Overbeek (1948) which is the solution of the linear Debye—
Hiickel equation and is based on the expansion for the potential developed by Levine
(1939) (to be referred to as method VI). This is applicable at small values of @, and it is
seen that the agreement is fairly good for ® = 2, 7 = 1 but becomes worse as® or 7 increases.
This comparison is also illustrated in figure 1 for 7 = 1 and various ©.

TABLE 4. FREE ENERGY OF INTERACTION
Evaluation by various methods of the quantity AF* [477®?2,

T=1 T=5 =15 T large
0] T(s—2) VI VI v
® small  0-00 0-658 0-768 — 0-693
0-50 0-395 0-490 — 0-474
1-00 0-222 0-304 — 0-313
1-50 0-120 0-184 — 0-201
2-00 0-066 0-110 — 0-127
3-00 0-020 0-026 — 0-049
I1I I III I I1I Va v
2 0-50 0-375 0-375% 0-416 0-416t 0-428 0-430 0-427
1-00 0-211 0-221 0-260 0-230 0-271 0-276 0-272
1-50 0-146 0-127 0-159 0-204 0-172 0-173 0-172
2-00 0-065 0-081 0-097 0-181 0-107 0-107 0-107
3-00 0-021 0-047 0-034 0-172 0-041 0-0408 0-0415
4 0-50 0-317 0-317% 0-325 — 0-329 0-288 0-319
1-00 0-171 0-183 0-191 — 0-194 0-186 0-190
1-50 0-094 0-111 0-113 — 0-118 0-116 0-115
2-00 0-053 0-075 0-068 — 0-073 0-0717 0-0709
3-00 0-017 0-057 0-024 — 0-027 0-0272 0-0271
6 0-50 0-240 0-334 0-232 — 0-232 — 0-223
1-00 0-126 0-214 0-130 — 0-130 0-113 0-122
1-50 0-069 0-136 0-076 — 0-077 0-0720 0-0725
2-00 0-039 0-080 0-046 — 0-047 0-0447 0-0441
3-:00 0-013 0-000 0-016 — 0-017 0-0169  0-0168
8 0-50 0-173 — 0-164 — 0-161 — 0-148
1-00 0-090 — 0-089 — 0-088 0-072 0-0792
1-50 0-049 — 0-049 — 0-051 0-0456 0-0464
2-00 0-028 - 0-031 — 0-031 0-0284 0-0281
3-00 0-009 — 0-011 — 0-011 0-0107 0-0107

1 Values adjusted by an additive constant to agree at 7(s—2) = 0-50 with those obtained by method III.

(ii) The values of the free energy by the approximate method V of Derjaguin. When
® = 2, we used equation (4-5) (method V&) and for larger values of @, equation (4:12)
(method V¢). Just as in table 3, the agreement between methods III and V is in general
good except at small 7. In figure 2 we illustrate the difference between these two methods.

(iii) The equation (4-3) for the free energy which should only hold for large R and 7
(method Va). It is observed that the agreement with method IIT is fairly good, even for
values of R* as low as 1-5. v

(iv) The free energy determined directly by method I only in those cases where the
results are not too grossly inaccurate. In table 5, the values of F* obtained by methods I
and IT are compared with the (correct) values determined by method III. The values of
2F ¢, the corresponding quantity for two single particles, are also given to show the relative

572
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magnitudes of F*, 2FF and the difference AF*. The relative errors in F* by methods I
and II are not large for the values in table 3, but the error in AF* becomes very large in
general and the results are of little use, particularly by method II.

0-6

% 0-4
&
<
P
Ry
4

0-2

0

Ficure 1. Comparison of methods IIT and VI for 7 = 1.
——, method VI (valid for ®<€1); - ~——, method III.

0-6

<@
S

AF*|4n7®?

ot
)

0
T(s—2)
Ficure 2. Comparison of methods III and V for 7 = 15.
, method V; ————, method III.

In table 6 we compare methods III and IV for obtaining the force between the particles.
Method IV is dependent on the values of the surface charge, and it has been explained in
part I that the potential distribution is given on a mesh which is not suitable for accurate
determination of the potential gradient at the particle surface. For ® = 2 the discrepancy
is not great, but for @ = 4 the error in method IV increases, and it is of little use for the
remainder of the cases presented in table 2.


http://rsta.royalsocietypublishing.org/

PHILOSOPHICAL
TRANSACTIONS

THE ROYAL A

PHILOSOPHICAL
TRANSACTIONS

L

_\r
NI
olm
~ =
oY)
o)
= uw

y

SOCIETY

OF

OF

Downloaded from rsta.royalsocietypublishing.org

INTERACTION OF TWO SPHERICAL PARTICLES. II 461

The numerical results in part I can be utilized to investigate the nature of the approxima-
tions in method V in the following manner. According to (3-4), the force between the
particles is determined solely by the potential distribution in the median plane. Now the
model chosen in method V implies that the potential distribution is given approximately

by the form (4-7), provided
0 =3[R -2/ —p?)] (p'<7) (5°6)

and ¢, = ¥,,(p") is the potential on the median plane ata distance p’ from the line of centres.
The formulae (4-7) and (5-6) define ¢,, = ¢,,(p’) as a function of p’ in the range 0<p' <7.

TABLE 5. FREE ENERGY OF TWO SPHERES

F* |47
T T(s—2) o 2F ¢ [4m nﬁlethod I method II method 111
1 0-5 2 16-49 14-8 14-8 151
4 73-2 67-5 70-4 68-4
1 1-0 2 16-49 155 147 157
4 73-2 69-6 69-3 70-5
5 0-5 2 255-8 239 245 247
4 1245 1303 1280 1219
5 1-0 2 255-8 243 254 251
4 1245 1338 1247 1230
15 0-5 2 2070 1758 2870 2045
4 10370 12036 15100 10291

TABLE 6. FORCE OF REPULSION BETWEEN TWO SPHERES
Comparison of methods IIT and IV.

S*[2m
- r A N

W-— 2) 0-50 1-00 1-50 2:00 3-:00

® method
2 11T 3-42 2:00 1-11 0-594 0-181
v 3-83 2-08 1-15 0-586 0-208
4 III 12-8 6-63 3-54 1-93 0-589
v 15-2 797 5-10 3:83 1-542

In figures 3 and 4 we have compared the function ¢,,(p") /® as calculated in part I, with that
defined by (4:7) and (5-6), for 7 =5 and 15, ® =2 and 8 and the smallest and largest
separations considered. Since the formula (41) can be approximately expressed as

AF* = 21 f ;M—%AFP{R’—2J(72—p’2)} o' dp’ (5+7)

(cf. Verwey & Overbeek 1948, p. 138), we have also plotted the integrand (a dimensionless
quantity) as a function of p’. It is observed that for 7 = 5 and 15 the approximate value of
d.(0"), as given by (4+7) and (5-6), cannot be very different from the correct value provided
(p'|7)2<1. Furthermore, the approximate and accurate curves for ¢, (p’) cross one another,
which implies a partial cancellation of the errors introduced in method V. Itis true that at
larger p’, the formulae (4-7) and (5-6) yield rather poor results, which is to be expected, but
then the contribution to the integrand in (5+7) from this range is small. It seems, therefore,
that the success of method V is partly due to the fortunate compensation of errors.
57-3
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% R*
8 05

Y

D9

AF,p'k[nkT  (in units of 1/R¥*)

<

Ficure 3. (Left) Comparison of potential distribution in the median plane for 7 =5 and various ®
and R* with the distribution defined by (4-11). , actual distribution; ————, distribution
defined by (4:11). (Right) Integrand in (4-12) for the same values of 7, ® and R*.

10

AF,p’k[nkT  (in units of 1/R*)

Ficure 4. (Above) Comparison of potential distribution in the median plane for 7 = 15 and various
® and R* with the distribution defined by (4-11). , actual distribution; ——~~, distribution
defined by (4-11). (Below) Integrand in (4:12) for the same values of 7, ® and R*.
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A summary of the description of the various methods is given below.

conditions for accuracy (with particular

method description mesh employed in methods I to III)

1 free energy expressed as volume integral over diffuse small 7 and R (7<3, 7(s—2)<1'5
ionic layers (equation (2-6)) and ® <5 say)

II free energy expressed as integral over particle same as I, but less accurate
surface (equation (2-8))

111 force expressed as integral over the median plane all values of parameters
(equation (3-5))

v force expressed as integral over the particle surface small @ (<2, say)

(equation (3-6))
A\ method of Derjaguin—set of parallel rings which are large 7 (>3, say)
sections of parallel plates
(a) expansion at large distances (equation (4-3)) large R (1(s—2)>1-5)
() expansion at small potentials (equation (4-5)) small @ (<25, say)
(¢) expansion at large potentials (equation (4-12)) large ® (>2, say)
VI application of series solution of linear Debye—Hiickel small 7 (<3, say) and small ® (<2)
equation

We conclude with the following remarks. The free energy depends on four parameters,
namely, the electrolyte concentration, the surface potential, the particle radius and the
particle separation, and these parameters have a wide range of values. Furthermore, the
surface potential need not be uniform or independent of the separation. This suggests that
it would be more practical not to rely entirely on numerical computations, but, on the basis
of the general theories already developed by various authors, to obtain approximate
formulae valid for parts of the range of the above parameters. These methods could be used
in conjunction with numerical methods which would no longer have to be applied over the
whole range but only where the theoretical expressions are poor approximations. One
such approach is method V, which has been examined in some detail in the present paper.
Another possible method is based on the result that the Poisson-Boltzmann equation is the
Euler differential equation which is obtained when the free-energy expression (2:1) is
required to be an extremum, subject to the condition of uniform surface potential. This
suggests that we choose a form for the potential distribution which depends on a number of
suitably chosen parameters and then determine these parameters by some variant of the
Rayleigh-Ritz method. Other approximate methods could doubtless be devised and it is
hoped to consider such problems at a later date.

The authors wish to acknowledge their indebtedness to Mr D. F. Ferguson of the Depart-
ment of Mathematics, University of Manchester, who carried out the greater part of the
numerical computations in tables 1 and 2. They also wish to thank Mr D. C. Henry of the
Department of Chemistry, University of Manchester, for his many valuable suggestions.

APPENDIX. GENERAL EXPRESSION FOR FORCE ON A PARTICLE

Let O and O’ be convenient points fixed inside the particles P and P’ respectively (which
are of arbitrary shape and have a constant, uniform surface potential ), and let the vector
s denote the position of O relative to O’. Suppose now that the particle P is given a uniform
infinitesimal translation ds, but no rotation. We denote (i) the volume of the diffuse ionic
atmosphere surrounding the two particles, which is not occupied by the particles in either
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configuration, by V*; (ii) the volume which is vacated by P when O is displaced to s +ds
and which is occupied by the diffuse layer, by 1] ; and (iii) the corresponding volume vacated
by the diffuse layer and occupied by the particle P, by dV; (see figure 5, where the particle
P is a sphere and the displacement ds is along the line of centres so that ds = 0R). Then in
position s of O, the volume V external to the two particles is V* + 4V, and in position s+ dJs
this volume is V* +-0V], where, of course, V] = dV;. The potential at any position r in V
relative to O’ may be written as ¥ (r, s) ; we are not concerned with the dependence of the
potential on the mutual orientation of the two particles since this is kept fixed. When the
position of O is changed to s+Js, the potential becomes ¥ (r, s +ds), which is expanded

in the form ¥ (r,s408) = Y (r,8) +¢,(r,s) ds+0(0s)?, (A1)

where Js is the magnitude of the vector ds and, of course, ¥,(r, 8) also depends on the direc-
tion of ds. For brevity we shall write ¥ = ¢(r,s) and ¥, = ¢,(r,s). In the analysis that
follows, it will be understood that we need only retain terms up to order ds.

SR

FIGURE 5

When O is displaced by ds, the second term in the expression (2-2) for F changes by

~

aF:-zn/cTUWW {cosh (Y4, 85) — } JVHWZ(cosh;]Vf—l)dv] (A2)

Now at any point in 0¥ or 0¥, the potential differs from ¢, by an amount of order ds. Hence
the integral over ¥ in (A 2) can be written as

9k TOV; (coshE/:—g,Q——l) (14+0(85)),

and the corresponding integral over d¥; has the same form but with the opposite sign. Since
8V, = 8V, = O(0s), the sum of the contributions from the volumes V] and 4%, on the right-
hand side of (A 2) is of order (ds)2. We are therefore left with the integrals over V'* and

these yield 2o s .
oF, — —onkTos[ “YisinhZY 4y = i:ff V2 do, A3
1 n s v* /CT Sll'l kT 47T v* ¢‘l ¢ v ( )

since ¢ satisfied the Poisson—-Boltzmann equation. |
Substituting (A 1) the first term on the right-hand side of (2-2) changes by

0F, =~ 205 (W wp)do—[ |V Paot [ pan]. (ag)

The integrals over V*in (A 3) and (A 4) may be combined to give

o3 B[ W=V (o) d = 5 [ m"’”ds (A5)
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transforming to a surface integral. Here §; is the surface of particle P, Sf is the surface
which bounds the volume swept out by particle P when it is displaced by ds and d/dn denotes
differentiation along the outward normal to these surfaces. On Sy, ¢, = 0 and on S} the form
of , may be obtained as follows. Consider a point N, say, which has a fixed position relative
to 0" and which is on the part of the surface S} that forms a boundary of §/;. When O is
in position s, N is on the surface of P and therefore the potential at N is y,. When the
particle P is given a uniform translation ds, N becomes a point in the diffuse ionic layer and
so the potential is less than ¢, i.e. , <0. If n denotes the unit outward normal vector to
the surface Sy at N, then the normal distance of N from the surface of P when O has position
s+ds is given by —n.ds. Hence noting that dy/dn<<0 at the particle surface, the change
in the potential at N when O is displaced by ds is

¥, 85 = — (3y/dn) n.ds. (A6)

A similar argument shows that (A 6) also represents the change with the displacement ds
in the potential at a point on that part of S} which is a boundary of §7;. It follows that the
right-hand member of (A 5) may be written as —2X.ds, where

X :if (a—%)zndS=-e—J‘ E™ndS. | (A7)
8mJg, \On 81,

We note that since terms of order (ds)* are neglected, the surface Sy may be replaced by S,,.
There remains to consider the integrals over V] and 8V} in (A 4). The integrands in both

these integrals may be equated to E2. Since the particle P has been given a uniform trans-

lation ds without rotation, an element of volume in V] may be written as dv = — (n.ds) dS

and in d¥;, as dv = (n.ds) dS, where dS is an element of surface on P. Thus, the sum of the

two integrals over 0V} and 0¥, in (A 4) is simply X.ds and so finally

OF = 0F, +0F, = —X.Js. ‘ (A8)

Since F is interpreted as the potential energy of interaction of the electric double layers of
the two particles (ignoring the additive constant 2F,), it follows that X is the (repulsive)
force exerted on P by P;. We note that the surface integral on the right-hand side of (3-2)
becomes identical with X if S, is chosen for S. Suppose now that (3-2) is applied to the case
where S consists of S, and S, where S, is any closed surface surrounding P but excluding P’.
We immediately derive the general expression for the force on the particle P, namely,

X =fs [Z%{(E.n)E——%EZn}—(H—HO) n:l ds, (A9)

where the unit vector n is drawn outward to S,. In the particular case of identical spherical
particles we obtain the two equivalent expressions in (3-3), depending on whether S, is
chosen as the median plane S§,, or as the particle surface S,. Indeed, the formulae ( 3:3)
apply to other particles of symmetrical shape (e.g. cylinder, cubes, spheroids), provided
they are identical and are symmetrically orientated to one another. Also, it is readily shown
that X tends to zero as the separation of any two particles increases. For we need only apply
(8-2) to the case of a single particle, where S consists of S, and a large sphere, the radius of
which becomes infinitely large; thus X vanishes for a single particle.
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Our discussion has been restricted to the case of a symmetrical binary electrolyte, but
it is readily shown that the general expression derived for the force applies to a general
electrolyte type. Furthermore, we may expect the general expression (A 9) for the force to
be independent of the particular surface conditions, whereas the formula (2-1) for the free
energy applies only when the surface potential is uniform and independent of separation.
This property of the force has already been noted in special cases by Verwey & Overbeek
(1948), Levine (1946) and Ikeda (1953), but we shall not attempt to prove it generally.
Finally, one could extend the foregoing analysis to derive the torque acting on a particle,
which is associated with its rotational motion.
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